CONTENIDO

- 1.- Introducción a la Inteligencia Artificial (IA)
- 2.- Lógica de predicados
- 3.- Búsqueda de soluciones

4.- Lenguajes de IA e Introducción a Sistemas Expertos

L.- Introducción a la Inteligencia Artificial (IA)

- 1.1. Introducción
- 1.2. Desarrollo histórico
- 1.3. Áreas de aplicación
- 1.4. Representación de conocimiento
- 1.5. Razonamiento
- 1.6. Estrategias de búsqueda
- 1.7. Lenguajes de programación
- 1.8. Fundamentos matemáticos
- 1.9. Teoría de conjuntos
- 1.10.Producto cartesiano
- 1.11. Teoría de grafos

I.I. Introducción

<u>Inteligencia</u>

Capacidad para percibir hechos y proposiciones y sus relaciones y razonar sobre ellos.

<u>Inteligencia Artificial</u>

Estudio de las facultades humanas mediante el uso de modelos computacionales

y rezonamiento
mentales 1
Processos

"La automatización de actividades que vinculamos con procesos de pensamiento humano, tales como la toma de decisiones, resolución de problemas, aprendizaje ..." (Bellman, 1978).

"El estudio de las facultades mentales mediante el uso de modelos computacionales" (Charniak y McDermott, 1985).

"Estudio de los cálculos que permiten percibir, razonar y actuar" (Winston, 1992)

Sonducta

"El arte de crear máquinas con capacidad de realizar funciones que realizadas por personas requieren de inteligencia" (Kurzweil, 1990).

"El estudio de cómo lograr que las computadoras realicen tareas que, por el momento, los humanos hacen mejor" (Rich y Knight, 1991)

"Un campo de estudio que se enfoca a la explicación y emulación de la conducta inteligente en función de procesos computacionales" (Schalkoff, 1990)

"La rama de la ciencia de la computación que se ocupa de la automatización de la conducta inteligente" (Luger y Stubblefield, 1993)

Eficiencia humana

Racionalidad

Sistemas que piensan como humanos	Sistemas que piensan racionalmente
Sistemas que actúan como humanos	Sistemas que actúan racionalmente

Programa inteligente

aquel que exhibe un comportamiento similar al de un humano cuando se enfrenta a un problema; sin embargo, no es necesario que el programa lo resuelva de la misma manera que un humano.

1.2. Desarrollo histórico

1960 Desarrollo del lenguaje LISP

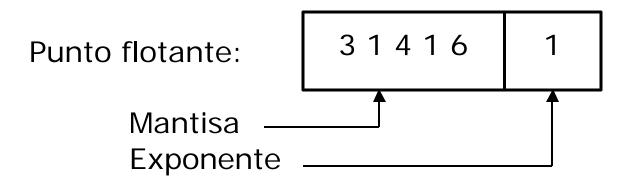
1961 Surge el término "Inteligencia Artificial" (John McCarthy).

1964 Desarrollo del programa ELIZA

1972 Desarrollo del lenguaje PROLOG

1976 Sistema experto: MYCIN

1.3. Áreas de aplicación

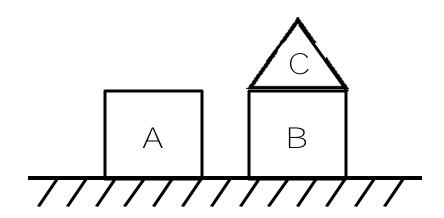

- Juegos
- Razonamiento automatizado
- Demostración de teoremas
- Sistemas expertos
- Lenguaje natural
- Modelación del comportamiento humano
- Robótica
- Lenguajes y ambientes de IA.
- Aprendizaje
- Redes neuronales
- Algoritmos genéticos

1.4. Representación de conocimiento

Capturar los aspectos esenciales del dominio del problema, haciendo esta información accesible a un proceso de solución del problema.

Número real:

Decimal: 3.1415927....



Representación en memoria de la computadora

11100010

1.5. Razonamiento

Manipulación de conocimiento cualitativo

LIBRE(C)

LIBRE(A)

ENMESA(A)

ENMESA(B)

SOBRE(C,B)

CUBO(B)

CUBO(A)

PIRAMIDE(C)

I.6. Estrategias de búsqueda

Requisitos de esquemas de representación de conocimiento

- Adecuada para representar la información necesaria
- ◆ Proporcionar soporte eficiente durante la ejecución
- ◆ Proporcionar un esquema natural para expresar el conocimiento requerido

Programas inteligentes	Programas convencionales
Cualitativos	Cuantitativos
Razonan	Calculan
Organizan conocimiento	Algoritmos

1.7. lenguajes de programación

Generaciones:

- 1. Lenguaje máquina
- 2. Lenguaje ensamblador
- Lenguajes de alto nivel FORTRAN COBOL PASCAL C
- 4. Lenguajes de funciones específicas
 Bases de datos
 Hojas de cálculo
 Simuladores
- Lenguajes simbólicos LISP PROLOG

	PASCAL	LISP	PROLOG	ООР
Modelo de lenguaje	Procedural	Funcional	Lógico	Objeto
Tipos de	Arreglos,	Simbólico,	Simbólico,	Simb,
datos	registros	Numérico,	Numérico,	Num,
		Listas	Listas,	Clases
			Predicados	
Manipulación de	Asignación	Funciones	Variables	Asignaci
datos			instanciadas	ón de
	Funciones		por	valores
			unificación	en
				objetos
Programa de	Secuencias	Evaluación de	Patrones de	Traslado
control	Ciclos	funciones	búsqueda	de
	Recursión	Ciclos		mensaje
		Recursión	Recursión	
Estructura de	Bloques	Funciones en	Reglas y	Objetos
programa		ambiente	hechos	en
		global		clases
				jerárqui
Madada	Commiledon	Camamiladas	Commileder	cas
Modo de	Compilador	Compilador	Compilador	Compila
interacción				dor

Características de los lenguajes de IA

- Soporte de computación simbólica
- Flexibilidad de control
- Posibilidad de explorar diferentes metodologías de programación
- Sintaxis clara y bien definida

1.8. fundamentos matemáticos

- Análisis matemático (Problemas de Ingeniería)
- Matemáticas discretas (Teoría de conjuntos, lógica, etc.)

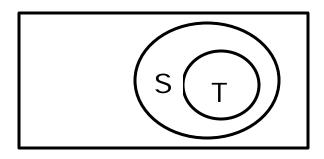
1.9. Teoría de conjuntos

Conjunto. - Colección de distintos objetos, en el cual el orden carece de importancia, así como su frecuencia de ocurrencia.

$${a, b, c} = {c, a, b} = {b, a, a, c}$$

Conjunto vacío { } ó

Los conjuntos se pueden representar en forma:


• Descriptiva
$$S = \left\{ x \mid x > 30 \right\}$$

Conjuntos. - Con mayúsculas.

Elementos. - Con minúsculas.

Conjunto universal **Subconjuntos**

T Ì S si cada elemento de T está contenido en S

P. ejem.

$$S = \left\{ \begin{array}{c} x \, , \, y \end{array} \right\}$$
 Subconjunto
$$\begin{cases} de \\ S \end{cases} \left\{ \left\{ \begin{array}{c} x \end{array} \right\} \left\{ \begin{array}{c} y \end{array} \right\} \left\{ \begin{array}{c} x, y \end{array} \right\} \right\}$$

<u>Unión de conjuntos</u>

La unión de dos conjuntos es un conjunto que contiene todos los elementos de ambos conjuntos y se define como ...

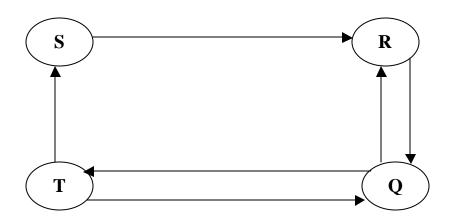
$$RUS = \left\{ x \mid x \mid x \mid Rox \mid S \right\}$$

Intersección de conjuntos

La intersección de dos conjuntos es un conjunto que contiene los elementos en común de ambos conjuntos y se define como ...

$$R \, \mathbf{C} \, S = \left\{ x \mid x \, a \, R \, y \, x \, a \, S \right\}$$

1.10. Producto cartesiano


Al conjunto de todos los pares ordenados (a,b) donde a ^a A y b ^a B, donde A y B son dos conjuntos, se denomina producto cartesiano.

$$A X B = \left\{ (a,b) \middle| a A y b B \right\}$$

I.II. Teoría de grafos

Un grafo consiste de :

- Un conjunto V de elementos a) llamados nodos (o vértices)
- b) Un conjunto E de aristas o arcos tales que cada arco de E se identifica por un par [u, v] de nodos de V.

